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IN MEMORY OF I. J. SCHOENBERG

An algorithm is given by which one can obtain a 4-sided C' surface patch. The
algorithm can be used to interpolate 4 arbitrary polynomial boundary curves
together with corresponding tangent planes. The method presented can be
generalized to produce Ck surfaces which are piecewise polynomial of degree 2k + I
or higher and which interpolate arbitrary Ck boundary information. Furthermore,
the method can be used with triangular patches. ij) 1993 Academic Press. Inc.

1. GENERAL DESCRIPTION

We describe an iterative method by which one can construct a 4-sided
C I surface patch. This method can be used to interpolate 4 arbitrary
polynomial boundary curves together with corresponding tangent planes.

Other solutions to this interpolation problem have been given earlier by
Coons [3] and for more general situations by Gregory [5]. Gregory's
solution is a rational surface of degree ~ with singularities at its corners.
The method presented here produces a simpler patch, namely, a piecewise
bicubic polynomial with, in general, infintely many polynomial pieces. The
method is a simple averaging as it is derived from the de Casteljau
algorithm and the midpoint computation !(a + b).

Moreover the method is immediately generalizable to Ck patches which
interpolate arbitrary Ck information along their boundaries [6]. Then the
patches are piecewise polynomials of degree 2k + 1. For k = 2 this s.olution
can be compared to the extension of Gregory's patch by Barnhill [1] and
Worsey [8J or Takai and Wang [9]. The solutions given there are rational
of degree ¥ or higher with singularities at their corners.

Also, the method presented below can be modified to produce triangular
Ck patches which are piecewise polynomials of degree 2k + 1 and which
interpolate arbitrary Ck information along their boundaries [7].
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2. THE SET Up

To start with, let ai(u, v), bi(u, v), i = 0, 1, be four patches in
C I

.
1([0 1] 2, R m

), 111 ~ 2. They provide the boundary information for the
patch p which is to be constructed, cf. Fig. I.

This means the stipulation

p(i,j)=aj (i,I-j)=b,(I-i,j), i,jE {O, I}, (2.1 )

W=u, v,

and that aj and bi have a common tangent plane at p(i, j).
We do not require, however, that

d d d d
-- a(i, 1 - j) =--bi(l- i, j)
du dv / . du dv

nor do we suppose that

d d
-d. aj(i, l-j)=-d. bi(l-i,j),w . w

(2.2)

(2.3 )

for any (i,j)E {O, IV
The patch p will be constructed as a piecewise bicubic such that p, ao,

ai' bo, and b l together form a continuous and tangent plane continuous
surface.

For the construction of p one needs the following:

1. For any 4x4 matrix C= [Ci.jJ~j~O over R m the corresponding
bicubic Bezier patch is denoted by

{

I Ci.i C) ui(1 - U)3 i C) vi(l- V)3j,

81[CJ(u, v) :=

o

FIG. 1. The patch to be constructed

(u, v) E [0, 1] 2

otherwise

(2.4 )
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and for any 8 x 8 matrix over Rm with 4 x 4 blocks D"
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the corresponding piecewise bicubic Bezier patch over [0, Ir is defined by

;j[D](u, v) = .'!I[D, ](2u, 2v) + 3l[D 2 ](2u, 2v - I)

+ 3l[D3 ](2u - I, 2v) + 3l[D4 ](2u - I, 2v - I). (2.5)

(For more information on the Bezier representation of polynomials
cf. [2].)

2. Let A = [aij]L~o be a Bezier matrix such that the surface

a(u, v)=31[A](u, v)

interpolates ao and a l at the corners, i.e.,

a(i, j) = aj(i, 1- j),

d d
-d a(i,j)=-d ajU,I-j),

v v
d d

du a(i, j) = du atU, 1- j)

and

d 2 d 2

d d
a(i,j)=-dd aj(i,I-j).

u v u v

Similarly let B= [b,.JL~o be such that

b(u, v)=31[B](u, v)

interpolates bo and b I in a similar fashion, i.e.,

D[b](i, j) = D[b,]( 1- i, j)

for

(2.6)

(2.7)

Note that because of (2.1), ak,/ = bk,/ for all k, IE {O, 3}.

3. Both a and b will be successively subdivided (here "quartered")
and partly averaged after each subdivision. If C= [C,.,];lj~O is a (Bezier)
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matrix, then C= [ci.JL~o will denote the (Bezier) matrix obtained from
C by subsidivion, i.e., C= UTCU, where

[

8 4 2 I I
I 4 4 3 3u=-
8 2 3 3

1 I

This means that a9[CJ(u, v)=~[C](u,v).

~ 4 ].

248

3. The Construction for Cubic Boundaries

The goal is to solve the above interpolation problem by only a piecewise
bicubic patch. A further motivation is that the underlying construction for
this patch is a very simple modified subdivision method which in contrast
to other simple subdivision methods, e.g., [4], allows for an easy analysis
of the surface it generates.

The construction of the interpolating patch p is most simply described if
the a i and bi are bicubic. It is given through the recursive procedure blend
below which has two 4 x 4 matrices as parameters. Modifications of this
procedure which work for arbitrary boundaries ai' bl are given in
Section 10.

ALGORITHM. blend (A, B)

begin
if
then
else
begin

A=B
render the bicubic patch 3I9[A]

- - 7Form M:= (A + B)/2 = [mijl.j~o

Define the eight 4 x 4 matrices Ai andB" i = I, 2, 3, 4, by

+ + + +
+ + + +
+ + + +

[AI ~:l =

+ + + +
(3.1 )A]

+ + + +
+ + + +
+ + + +
+ + + +
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and
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+ + + +

[B I
B

2 J=
+ + + +

(3.2)
BJ B4

+ + + +
+ + + +

where

{

iii,}

entry(i, j) = hi'i.

m i ,;

Fori=1,2,3,4
execute blend (A;, B i )

end of else
end of procedure.

if marked by +
if marked by -,

if marked by 0

4. FIRST DISCUSSION

Figure 2 shows what blend (A, B) has rendered at the third recursion
level if A = B except, e,g., 8 2,1 i= b2• 1 and 8 3,1 i= b3,1' A question mark points
out the hole not yet filled. The numbers refer to the recursion level at which
the corresponding patch is generated.

FIG. 2, The patch blend (A, B) after three recursions.
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In general, the procedure blend renders successively more and more
bicubic patches which fill the "hole" between an, aI' bo, b l in the limit.
Together with the boundary curves of ao, ai' bo, b l these infinitely many
patches form a C' surface patch p which fits C I smoothly in the hole left
by ao, aI' b l and b1. All this is obvious from the construction if one
disregards the four corners of p. (Otherwise see, e.g., [2], for the geometric
meaning of a Bezier representation).

More generaly, there is

THEOREM 4.1. Let A = [ai.i];j~O and B= [bi.j]L~o be arbitrary
matrices whose entries are points in Rnl

, for some m ~ 2, such that a i.j = bi,j,
for (i, j) E {O, 3} 1. Then p as generated by blend(A, B) is continuous and
continuously diflerentiable on [0, I Y

The continuity of p depends on a parametrization. The simple
straightforward parametrization of p is made explicit in the next section-a
more complicated one is needed later. [0, 1]1 is the parameter domain of
p and the fact that p is continuously differentiable in [0, 1]1\ {O, 1}1 is
straightforward.

Theorem (4.1), then, states that p is also continuously differentiable at
(0,0), (1,0), (0,1) and (1,1) and (I, I). The proof is established by a
sequence of special results in Sections 6, 7, and 8. The "binder" of these
special results is Lemma 5.3.

5. THE SIMPLE PARAMETRIZATION

The simple parametrization of p is suggested by the standard
parametrization of its cubic subpatches. For the sake of clarity this simple
parametrization is explicitly defined below.

During its first execution procedure blend generates the matrices Ai and
Bi, i = 1, ... , 4 (provided A # B). Then again (if Ai # Bi) blend (Ai' B i )

generates four matrices A i and B,. Let these newly generated matrices be
denoted by Au and Bil,j= 1, ... , 4.

More general, let Ai, inj and BI] . Inj denote the matrices generated at
the nth recursion level, i.e., during the execution of blend (Ail in' Bil J.

Analogously we define the points

(5.1 )

which correspond to a uniform subdivision of the square [0, I f
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For all i = it ... in E N, with Ai = B j the parametrization of p over
qj + [0, 2 -n]2 is then defined by

(5.2)

This definition fixes the parametrization of p besides, maybe, at its
corners. There we define-or, perhaps, already have by (5.2)-

p(O, 0) = ao.o = bo,o,

p(I,0)=a 3.0 =b3.0 ,

p(O, t) = aO,3 = bo.),

p(l,I)=a3,3=b3,3'

This definition for, e.g., p(O,O) coincides with (5.2) if A 1= B I • Let
peA, B]( .) denote the simple parametrization of the surface generated by
blend (A, B). On exploiting the linearity of the subdivision operator one
gets

LEMMA 5.3. If A, B, C and Dare 4 x 4 matrices over R m such that
ai,J = bi.} and c i.J = di.} for all (i, j) E {O, 3 }2, then

peA + C, B + D](u, v) = peA, B](u, v) + p[ C, D](u, v).

6. C1-CONTINUITY WITH THE SIMPLE PARAMETRIZATION

Let Ei.J(d) = [ek.l]L~o denote the 4 x 4 elementary matrix over W' all
of whose entries are zero vectors except e;.} = d. Then a special case of
Theorem (4. t) is covered by

PROPOSITION 6.1. If B-A = El.dd), dE Rm, then p(u, u) E C I( [0, t ]2, Rm)
where p(u, v) denotes the simple parametrization of the surface generated hy
blend(A, B).

Because of symmetry reasons, Proposition (6. t) holds also if B - A =
EI.2(d), B - A = E2• 1(d), and B - A = E 2•2 (d) and because of Lemma (5.3)
also if B- A =LL~ I E;jd;.).

In order to facilitate the following proofs we introduce the notation

(6.2)

for any two m x n matrices M = [m;,J and N = [n;,J.

Proof If d = 0, then p( u, v) = a( u, v) = b( u, t'). Hence, let us assume the
nontrivial case, d #- O. Let ii denote the concatenation of n ones, I ... I, i.e.,
e.g., A = A Q • Then procedure blend generates only the matrices A", and B""
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n=O, 1,2, ..., i=t,2,3,4. From the definition of A" and Bn and the
subdivision construction - one can derive

(6.3) helps to analyse the matrices

Dn := [AAni An2 J- An
,,3 A n4

which can also be obtained through the operation

where

(6.3 )

(6.4 )

(6.5 )

o =[~ ~l

On introducing the abbreviation

d,,(u, v) := ~[D,,](u, v)

one derives from (6.4)

ex

p(u, v) = a(u, v) + L d,,(2"u,2"v)
11=0

and concludes from (6.3) and (6.5) that

max Ild,,(u, v )11 ~ max liD" [i, j] II = 0(4 -")
[0.1]2 i.j

(6.6 )

(6.7)

(6.8 )

for any vector norm 11·11. Thus, the infinite sum in (6.7) and its partial
derivatives converge uniformly, i.e.,
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7. INCOMPATIBLE PARTIAL DERIVATIVES
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In case the patches a and b have a common tangent plane in (0,0) but
do not satisfy condition (2.3) in (0,0), the vectors

and v = boo 1 - ao. I

are not both zero. However, bo.o, bo.1, b l.o, a O. I' al,O are coplanar.
Obviously, the simple parametrization of blend (A, B) cannot be in
C I (0, 0) in this case. Yet, one still has

PROPOSITION 7.1. Let B- A = £1.0(U) + £o.Jlv) # (0, 0). Then the simple
parametrization p(u, v) of blend(A, B) is continuous.

The remark preceding the proof of (6.1) applies here, too, after adapting
it to the context here.

Proof The proof is similar to the proof of (6.1). Here, (6.3) takes on
the form

Again, let D l1 and d l1 be as in (6.4), (6.5), and (6.6). Then (6.7) is still
valid but we only have

for every norm 11·11. This implies, at least, uniform convergence in (6.7)
and, hence, continuity of p(u, v). I

While the partial derivatives of p(u, v) do not exist in (0,0) they do exist
everywhere else in [0, 1]2 and the following two lemmas show that they
are bounded. These facts are needed to construct a C 1 parametrization for
blend(A, B).

LEMMA 7.3. Under the assumptions of (7.1 ) and the simplification A = °
one gets in a neighborhood of (0, 0)

p,.(u, V)=flU+vv, (u, v) # (0,0),

where )l =)l(u, v) E ( - 0.9, 2.5) and v = v( u, v) E ( - 1, 5.2).

640.721-7
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Proof From (6.7) and (7.2) we obtain

'1.-'

p(U, v) = L d,,(2"u,2 nv)

= q(u, v)u + r(u, v)"

where, e.g.,

with the piecewise bicubic patches

f(u, v) := :?J[El,o(l ) (8) P](u, v)

and

h(u, v) :=~[EI,I(I)®P](u, v).

In order to estimate il = q" in [0, I r\ {(O, O)} we first show that

(7.4 )

'"''
I1(U,V)= L [f..+h,,](2 nu,2 nv)+O(ulogu). (7.5)

n~O

Namely, there is a positive constant M such that

Ih ( ) {
MU if u E (0, I]

I' U, v I ~ .o otherwIse.

Thus for u = 0

~ I
" - h (2"u 2nv) = 0~ 2f1 V ,

n=O

and for u = 2 - NX , X E (~, I]

I
~ ~ h(2"u 2"V)I,< :: ~ M2"u
1-.J 2" l- , "'"'" ~ 2"

»=0 »=0

=M(N+ l)u

= M( I + log x -log u)u

= O(u log u).
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This implies (7.5) in view of (7.4). It remains to find a bound for

oc

L [fv + h,,](2nu, 2nv).
n=O

97

After some elementary manipulations one obtains in [0,1 ]2\ {(O, O)}

-3F(u) ~ [f" + hv](u, v) ~ F(u)

where

) ._ 27 {2U - 6u
2 + 5u 3

F(u .- 8 2 2 3u- u +u

If Nis such that x=2 NuE(!, IJ, then

for UE [O,!J

for U E ( ~, 1].

oc N N

L (f., + h,.)(2/1u, 2/1v)~ L: F(2 nu) = I F(2-/lx ),
n~O /1=0 /I~O

I.e.,

00 oc

L (fv+hv)(2nu,2nv)~ L F(2- nx)=¥(3x-4x2 +!fx3
)

n~O n~O

< 2.5 for x EO, 1].

This, essentially, establishes the bounds for p. Similarly one can construct
the bounds for v. I

Symmetrically to (7.3) there is

LEMMA 7.6. Under the same assumptions as in (7.3) one gets in a
neighbourhood of (0,0)

pu(u, v) = ~u + 1JV, (u, v) ¥- (0, 0),

where ~ E (- 2.2,4) and Y/ E ( - 2.5,0.9).

The bounds given in (7.3) and (7.6) are rather crude and can be
improved.

8. A C1-PARAMETRIZATION IN THE GENERAL CASE

Let A and B be two 4 x 4 matrices over Rm, m ~ 2, such that

a(u, v)=f?I[AJ(u, v)
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and
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b(u, v) = a9[B](u, v)

satisfy (2.1) and have common tangent planes in each corner (i, j) of
(0, I] 2. Under some constraints on

o
;;- (b - a)(i, i),
uW

we show that blend (A, B) is tangent plane continuous.
Without loss of generality we could assume that A and B are already

generated by the first call of blend. Therefore, we can assume that

where D = El.o(u) + Eo. I (v). Because of symmetry reasons incompatibilities
in other corners can be dealt with analogously.

Let p(u, v) and q(u, v) be the simple parametrizations ofblend(A, B-D)
and respectively blend(O, D). Then recall from (5.3) that p + q repre­
sents the simple parametrization of blend(A, B) and from (6.1) that
pEC 1[0,1]2.

THEOREM 8.1. Let p,,:=p)0,0)=3(aI. 0 -ao.0 ) and P,,:=P,,(O,O)=
3(aO• 1 -ao.o). Assume that P,,+,uu+vv and p,,+~u+1]v are linearly
independent for all ,u, v,~, 1] in the bounds of (7.3) and (7.6). Then
blend(A, B) is tangent plane continuous.

Proof In particular, the vectors Pu and P" are linearly independent.
Thus there is a linear map rp: R 2

-> span {Pu' P,,} such that

and rp l~l = P,,,

Since image of q s; span {u, v} s; span {Pu, PI'}' rp 10 q maps into R 2
. Let

k(u, v):= id(u, v) + rp-I oq(u, v): R 2 -> R 2
•

q and therefore k are differentiable in [0,1]\(0,0). Moreover, from (7.3)
and (7.6) it follows that the Jacobi matrix of q>" k satisfies

J<p k=[Pu+~u+1]V,p,,+,uu+vv]

in a neighborhood of (0, 0), where ~, 1], ,u, and v lie in the bounds given in
(7.3) and (7.6). Because of the assumption in (8.1), J k is bounded and the
Jacobian of k is bounded away from zero. Thus k is locally invertible in a
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neighborhood W of (0,0) without (0,0) and J k I is bounded in W. One
can conclude then that the Jacobi matrix of

(p+q)ck-I=pk-I+qk- I

=pk- 1 +qJ(k-id)k- 1

= (p _ qJ)k - 1 + qJ

converges to J",(u, v) = Jp(u, v) as (u, v) goes to (0,0). I

9. QUICK COMPUTATION

The recursive procedure blend in Section 3 can easily be transformed
into an iterative procedure. A very inexpensive form of the algorithm can
be obtained if B-A=2::i.J=I.2Ei.J(Vi.J).

First, this quick algorithm evaluates blend (0, EI.I (l)) at the grid points
{O, lin, 21n, ..., nln}2 using (6.7), where n = 2k is assumed:

0 S[i,j] :=81[E1.dl)](i/n,jln), i,j=O, ..., 2k

1 Add 4 -IS[2i, 2j] to S[i, j], i, j = 0, ..., 2k - 1

2 Add 4 -2S[2 2i, 22j] to SCi, j], i,j=O, ... , 2k - 2

k Add 4 -kS[2ki, 2kj] to S[i, j], i,j=O, I.

Because of symmetry reasons and Lemma (5.3) one finally has

k + 1 blend(A, B) at (i/n, jln)

= a(i/n, jln) + Sri, j]V1.1 + Sri, n -j]vl.2

+ Sen - i, j] V2,l + Sen - j, n - i] v2.2

where a(u, v) = 8l[A ] is the simple parametrization of blend (A, A).

Remark 9.1. The matrix S as computed in the algorithm above can be
stored and used again to compute blend(A, B) with different values of A
and B. If only I steps of the algorithm are performed, 1:0:::; k, one obtains an
approxmation S, for the exact value Sk of S. Because of (6.3), (6.5), and
(6.7)

1 1
(S,- S)[i, j] = 4: (S,_ 1 - S)[2i, 2j] =4' (So - S)[2'i, 2'iJ.
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Also, each point blend(A, B)(u, v) lies between 8l[A](u, v) and 8l[B](u, v).
Thus Sari,}] and Sri,}] both lie between 0 and 8l[EI.l(1)](i/n,j/n), i.e.,
ISo [i, j] - Sri, j] I~ 8l[EI.l (1 )](u, v) < 0.2.

Remark 9.2. The derivatives of blend(A, B) can be computed by essen­
tially the same algorithm. For example one gets the u-partial derivative
after the following modifications of the above algorithm: Replace
8l[E1.,(1}] by (a/au)8l[EI.l(1)] in step 0, the number 4 by 2 in steps 1
through k, and in step k + I replace blend(A, B} by (a/au) blend(A, B} and
a by (a/au)a.

10. EXTENSIONS

The procedure blend can be modified and used with polynomials of
higher degrees [6]. Then one can obtain also patches of higher smoothness.
In particular, let a and b in (2.6) and (2.7) be polynomials of degree (m, m),
m> 3. Then their Bezier matrices A and Bare (m + I) x (m + I) matrices.
In order to accommodate blend to these matrices the pattern on the right
sides of (3.1 ) and (3.2) needs to be redefined. There are various possibilities.
The pattern matrices in (3.1) are always of the form

[
P PEJ

EP EPE'

with some (m + I) x (m + I) pattern matrix P. The corresponding pattern
in (3.2) is obtained by transposing the pattern of (3.1) and changing +
signs to - signs and vice versa.

EXAMPLE 10.1. If m = 4,

+ +
+ +

P= + +
+ +
+ +

and A[i,}] = B[i,}] for (i,j)E{O, 1,3,4}2\{(1, 1), (1,3), (3,1), (3,3)},
then blend(A, B) is a C 1 patch which interpolates aU, v), auU, v), b(u, i),
and b,(u, i), i=O, I, U, VE [0,1]. The proof is analogous to the proof
of (6.1 ).
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FIG. 3. A triangular patch produced by blending.

EXAMPLE 10.2. If m= 5

+ + +
+ + +

p= + + +
+ + +
+ + +
+ + +

101

and A[i,JJ=B[i,j] for i+j~2, i+j~8, i-j~3, and j-i~3, then
blend(A, B) is a C2 patch which interpolates a(i, v), au(i, v), auu(i, v),
b(u, i), b,,(u, i), and b",,(u, i), i=O, 1, for all u, VE [0,1]. The proof is
analogous to the proof of (6.1).

Another application of blend is obtained if the procedure is formulated
for triangular Bezier patches. Instead of blending two quadrangular Bezier
patches a and b the modified procedure has to blend three triangular Bezier
patches to a smooth interpolating patch.

Figure 3 illustrates what this modification of blend renders after two
recursions. The numbers indicate at which recursion level a subpatch is
rendered. More details are given in [7].

REFERENCES

1. R. E. BARNHILL, Computer aided surface representation and design. in "Surfaces in
CAGD" (R. E. Barnhill and W. Boehm. Eds.), pp. 1-24, North-Holland. Amsterdam. 1983.

2. W. BOEHM, G. FARIN, AND J. KAHMANN, A survey of curve and surface methods in CAGD,
Comput. Aided Geom. Design (1984), 1-60.

3. S. A. COONS, "Surfaces for Computer Aided Design for Space Forms," Technical Report,
Project MAC-TR 41, MIT 1967.

4. E. E. CATMULL AND J. H. CLARK. Recursively generated B-spline surfaces on arbitrary
topological mashes, Comput. Aided Desil?n 10 (197).350-355.



102 HARTMUT PRAUTZSCH

5. J. A. GREGORY, C' rectangular and non-rectangular surface patches, in "Surfaces in
CAGD" (R. F. Barnhill and W. Boehm, Eds.), pp.25-33, North-Holland, Amsterdam,
1983.

6. H. PRAUTZSCH, Approximate C-blending with tensor product polynomials, Compulin[?, to
appear.

7. H. PRAUTZSCH, Approximate CI-blending with triangular cubic patches, in "Eurographics
Workshop in Santa Margharita Oct. 1991," proceedings, Springer, 1992.

8. K. TAKAl AND K. K. WANG, Curvature-continuous Gregory patch: A modification of
Gregory patch for continuity of curvature, in "Proceedings Japan-U.S.A. Symposium on
Flexible Automation, Kyoto, Japan, 1990," pp. 1205-1211.

9. A. J. WORSEY, A modified C2 Coons' patch, Compul. Aided Geom. De.l'i[?n I (1984),
357-360.


